Abstract

Iodinated contrast media (ICM) are found at considerably higher concentrations than any other pharmaceutical in waste water, surface water and bank filtrate. While the compounds are persistent to deiodination in aerobic environments, field data from bank filtration transects have demonstrated a partial deiodination in reducing soil–water environments. In a previous lab study, we have shown that this reductive deiodination is abiotically catalyzed by (free) corrinoids. To achieve a better understanding of the incomplete deiodination in the environment, we now investigated the reaction kinetics based on the decrease of the iodinated compound, the formation of deiodinated transformation products and the iodide release. The deiodination follows first-order kinetics and consists of three partial reactions for the release of three iodine atoms. The deiodination rate decreased with decreasing iodination degree with the deiodination rate constants k1 > k2 > k3. In contrast to the ICM, 2,4,6- and 2,3,5-triiodobenzoic acid, 5-amino-2,4,6-triiodoisophthalic acid and monoiodobenzoic acids did not show a complete deiodination under the same test conditions. Our results show that the deiodination strongly depends on the substitution pattern of the bound iodine atoms as well as on adjacent functional groups. Iodine atoms in ortho-position to another iodine atom or a carboxyl group were released more easily while an amino group in ortho-position inhibited the deiodination. Tests in tap water in the presence of B12 showed a much slower deiodination than in ultrapure water, most likely caused by competitive electron acceptors in the water matrix.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.