Abstract
The reaction kinetics models of carbon fiber-reinforced plastic (CFRP) degradation in supercritical fluids were established by analyzing the chain scission reaction of a cross-linked network in CFRP. The effect of reaction time and temperature on the residual resin content from the recycled carbon fiber was investigated. The reaction order of CFRP degradation was estimated, and the reaction rate constant was calculated at different reaction temperatures. Reaction kinetics equations of CFRP degradation in different supercritical fluids were also proposed. Results indicated that CFRP degradation was mainly due to the scission of the C–C, C–O, and –O– bonds in the linear chain segment and of the C–N bond in the cross-linked segment of an epoxy resin cure system. The reaction order was 2 or 2.5. The monofilament tensile strength of recycled carbon fiber in supercritical n-butanol and n-propanol, which had higher degradation reaction rates, decreased by about 2% compared with that of the original carbon fiber.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.