Abstract

AbstractReaction‐induced vitrification takes place in the network‐forming epoxy–amine system diglycidyl ether of bisphenol A (DGEBA) + methylenedianiline (MDA) when the glass‐transition temperature (Tg) rises above the cure temperature (Tcure). This chemorheological transition results in diffusion‐controlled reaction and can be followed simultaneously with the reaction rate in modulated‐temperature DSC (MTDSC). To predict the effect of Tcure and the NH/epoxy molar mixing ratio (r) on the reaction rate in chemically controlled conditions, a mechanistic approach was used based on the nonreversing heat flow and heat capacity MTDSC signals, in which the reaction steps of primary (E1OH = 44 kJ mol−1) and secondary amine (E2OH = 48 kJ mol−1) with the epoxy–hydroxyl complex predominating. The diffusion factor DF as defined by the Rabinowitch approach expresses whether the chemical reaction rate or the diffusion rate determines the overall reaction rate. A model based on the free volume theory together with an Arrhenius temperature dependency was used to calculate the diffusion rate constant in DF as a function of conversion (x) and Tcure. The relation between x, r, and Tg, needed in this model, can be predicted with the Couchman equation. An experimental approximation for DF is the mobility factor DF* obtained from the heat capacity signal at a modulation frequency of 1/60 Hz, normalized for the effect of the reaction heat capacity in the liquid state and the change in Cp in the glassy region with x and Tcure. In this way, an optimized set of diffusion parameters was obtained that, together with the optimized kinetic parameters set, can predict the reaction rate for different cure schedules and for stoichiometric and off‐stoichiometric mixtures. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2814–2833, 2004

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.