Abstract
AbstractThe effective deoxygenation of oxygenates remains a major challenge that needs to be overcome for industrial‐scale conversion of biomass to fuels. Present technology uses expensive gaseous hydrogen for deoxygenation. This work looks at the possibility of using methane or natural gas as an alternative for the deoxygenation process. Catalytic pyrolysis studies were carried out using furan as the model oxygenate in the presence of methane in a fixed‐bed reactor over 5 % Ni/HZSM‐5 as catalyst. The effects of temperature and space velocity on the catalyst activity, reaction kinetics, and deactivation behavior were studied. It was found that the deoxygenation of furan was first and second order with respect to furan and methane concentration, respectively. Deactivation studies suggested that catalyst deactivation takes place through poisoning, fouling, and sintering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.