Abstract

To understand the reaction behavior of heavy oil visbreaking with reduced diffusion limitation, the visbreaking of an atmospheric residual oil in the solvent of supercritical benzene (SCbenzene) was applied, followed by a reaction kinetics analysis based on a hybrid lumping with combination of boiling point distribution and group composition of oil components. The visbreaking under SCbenzene environment was found to be much faster than that under nitrogen environment, proceeding effectively even at a temperature lower to 350 °C. Although the dealkylation-based lumped reactions responsible for light component production and viscosity reduction are supposed to dominate the visbreaking, a competition between dealkylation and condensation exists throughout the visbreaking. Because of the reduced diffusion limitation to reaction kinetics, the condensation-based lumped reactions with a higher activation energy up to 306 kJ.mol−1 respond more sensitively to the variation of reaction temperature, greatly shortening the reaction time window for the visbreaking at high temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.