Abstract

In Fe–Cu alloys, Cu precipitates are formed during high-energy particle irradiation. If there exists energetic binding between vacancies and Cu atoms, vacancy clusters (voids) are formed in precipitates at an initial stage of irradiation, separate from voids in the matrix, because of the migration of Cu atoms with vacancies. In this paper, the damage rate dependence on the formation and annihilation of voids in the precipitates and in the matrix is simulated by reaction kinetic analysis. The initial formation of voids at precipitates, the annihilation of them with an increased dosage and new formation of voids in the matrix are simulated, and the results are compared with the experiments. In a high damage rate of 3.3×10−7dpa/s, the formation of voids in Cu precipitates is not significant, but the formation of voids in the matrix is dominant, different from those in a low damage rate of 1.5×10−10dpa/s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.