Abstract

Aiming at a mechanistic understanding of the CO and CO2 methanation reaction over supported Ru catalysts and the underlying physical reasons, we have investigated the methanation of CO and CO2 over a Ru/zeolite and a Ru/Al2O3 catalyst, in idealized and CO2-rich reformate gases by in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) measurements, employing quantitative steady-state isotope transient kinetik analysis (SSITKA) techniques. On the basis of the correlation between COad band intensity/COad coverage, CH4,ad/HCOad/formate band intensity, and the CH4 formation rate under steady-state conditions, HCOad is unambiguously identified as reaction intermediate species in the dominant reaction pathway for CO methanation on the Ru/Al2O3 catalyst. On the Ru/zeolite such species could not be detected. CO2 methanation proceeds via dissociation to COad, which is subsequently methanated. Formation and decomposition of surface formates plays only a minor role in the latter reaction, they r...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call