Abstract

Organic peroxides have caused many serious explosions and fires that were promoted by thermal instability, chemical pollutants, and even mechanical shock. Cumene hydroperoxide (CHP) has been employed in polymerization and for producing phenol and dicumyl peroxide (DCPO). Differential scanning calorimetry (DSC) has been used to assess the thermal hazards associated with CHP contacting sodium hydroxide (NaOH). Thermokinetic parameters, such as exothermic onset temperature (T0), peak temperature (Tmax), and enthalpy (ΔH) were obtained. Experimental data were obtained using DSC and curve fitting using thermal safety software (TSS) was employed to obtain the kinetic parameters. Isothermal microcalorimetry (thermal activity monitor, TAM) was used to investigate the thermal hazards associated with storing of CHP and CHP mixed with NaOH under isothermal conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.