Abstract

The accurate calculation of reaction-free energies (ΔrG°) for diboronic acids and carbohydrates is challenging due to reactant flexibility and strong solute-solvent interactions. In this study, these challenges are addressed with a semiautomatic workflow based on quantum chemistry methods to calculate conformational free energies, generate microsolvated solute structural ensembles, and compute ΔrG°. Workflow parameters were optimized for accuracy and precision while controlling computational costs. We assessed the accuracy by studying three reactions of diboronic acids with glucose and galactose, finding that the conformational entropy contributes significantly (by 3-5 kcal/mol at room temperature). Explicit solvent molecules improve the computed ΔrG° accuracy by about 4 kcal/mol compared to experimental data, though using 13 or more water molecules reduced precision and increased computational overhead. After fine-tuning, the workflow demonstrated remarkable accuracy, with an absolute error of about 2 kcal/mol compared to experimental ΔrG° and an average interquartile range of 2.4 kcal/mol. These results highlight the workflow's potential for designing and screening tweezer-like ligands with tailored selectivity for various carbohydrates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.