Abstract

An analytical approach to compute the excess entropy of solvation at constant pressure in three-dimensional reference interaction site model (3D-RISM) calculations is presented. It includes the changes in the macroscopic dielectric constant of the solvent upon variation of temperature and density. The approach is exact within the framework of force-field descriptions of the solute and gives reasonable results for self-consistently determined electrostatics as used in the 3D-RISM-self-consistent field approach, particularly for entropy differences. The new method is applied to simple examples of reaction entropies of iron complexes in aqueous solution, for which simple gas-phase calculations and many other approaches give unreliable estimates. For both redox half-reactions and spin-crossover processes, (semi)quantitative agreement with experimental reaction entropies can be achieved out of the box.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call