Abstract

Recombinant Cupriavidus necator H 16 with a novel metabolic pathway using a cobalamin-dependent mutase was exploited to produce 2-hydroxyisobutyric acid (2-HIBA) from renewable resources through microbial fermentation. 2-HIBA production capacities of different strains of C. necator H 16 deficient in the PHB synthase gene and genetically engineered to enable the production of 2-HIBA from the intracellular PHB precursor (R)-3-hydroxybutyryl-CoA were evaluated in 48 parallel milliliter-scale stirred tank bioreactors (V = 11 mL). The effects of media composition, limitations, pH, and feed rate were studied with respect to the overall process performances of the different recombinant strains. 2-HIBA production was at a maximum at nitrogen limiting conditions and if the pH was controlled between 6.8 and 7.2 under fed-batch operating conditions (intermittent fructose addition). The final concentration of 2-HIBA was 7.4 g L(-1) on a milliliter scale. Best reaction conditions identified on the milliliter scale were transferred to a laboratory-scale fed-batch process in a stirred tank bioreactor (V = 2 L). Two different process modes for the production of 2-HIBA, a single-phase and a dual-phase fermentation procedure, were evaluated and compared on a liter scale. The final concentration of 2-HIBA was 6.4 g L(-1) on a liter scale after 2 days of cultivation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.