Abstract

Although engineering turbulence modeling is a well-established field, there is room for new ideas. In the current work, the rate of Reynolds stress generation is considered the product of a probability coefficient dependent on the viscous effect over the inertia effect and an energetic parameter expressed in terms of velocity dependence. The rate of Reynolds stress dissipation is defined as a simple second-order power function; this function emphasizes the nature of the local interactions (molecular level at their origins) that are similar to those for the reaction. Hence, the current approach can be called a reaction engineering approach for turbulence. Examples analyzed with this approach are: 1) the Universal Law of the Wall; 2) diameter-wide axial velocity distribution of the circular pipe (internal flow); 3) bulk behavior of the axial velocity distribution for a turbulent planar jet (external flow); and 4) far-field axial velocity distribution for a planar jet with numerical simulations. These findings suggest the potential of this approach for future exploration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.