Abstract

The kinetics of some gas-phase alcohol/alkoxide proton-transfer reactions is slower than predicted by simple Rice–Ramsberger–Kassel–Marcus (RRKM) rate theory modeling on the near-barrierless reaction surfaces. Reaction dynamics can be investigated in isolation from nonequilibrium and/or thermodynamic considerations through the study of a generic isoergic ion–molecule system X−+X−H. Monte Carlo quasiclassical trajectory simulations on barrierless reaction surfaces show that the slow experimental kinetics is consistent with both (i) locking of the external rotations of the reactants and (ii) passage over the (orbital angular momentum) centrifugal barrier being the rate-determining steps in bimolecular association, rather than only the latter process. In addition, there may be non-RRKM product selectivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.