Abstract

The spatiotemporal dynamic response of a segmented anode parallel channel polymer electrolyte membrane (PEM) fuel cell was monitored following changes in flow rate, temperature and load resistance. Autohumidified operation with dry feeds at 1 bar pressure was achieved at temperatures below 70°C, where the convective transport of water vapor was less than the water production by the fuel cell current. The current could be “ignited” by a single injection of water into the anode feed, or by reducing the temperature and external load resistance. Co-current flow of the hydrogen and oxygen resulted in current ignition at the outlets of the flow channels, followed by a wave of high current density propagating toward the inlets. Counter-current flow of the hydrogen and the oxygen resulted in ignition near the center of the flow channels; over time the ignition front fanned out. The spatio-temporal dynamics of the current ignition along the flow channels can be effectively predicted from a model of a set of coupled differential fuel cells in series. Liquid water condensing in the flow channels gives rise to complex spatio-temporal variations in the current density; these variations are strongly dependent on orientation of the fuel cell with respect to gravity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.