Abstract
We experimentally examined the time-evolutions of local compositions in photocurable, monomer-solvent-initiator ternary liquid film coatings using attenuated total-reflectance-Fourier transform infrared spectroscopy. The coatings exhibited phase separation upon UV exposure owing to the inherent partial miscibility between the solvent and the polymer. The solvent concentration at the bottom of the coating increased when exposed to UV light for 1 s from the top, showing a solvent transport along the irradiation direction. The differences in solvent concentration before and after UV exposure showed good agreement with model predictions based on stress-induced non-Fickian solvent mass transport. The solvent concentrations at the bottom remained constant in the case of discrete phase structures, whereas it exponentially decayed over time in bicontinuous phase structures. These results suggest that light-tunable microstructures enable the relaxation of the reaction-driven nonuniformity in solvent concentration distributions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.