Abstract

The bacterial colony is a powerful experimental platform for broad biological research, and reaction-diffusion models are widely used to study the mechanisms of its formation process. However, there are still some crucial factors that drastically affect the colony growth but are not considered in the current models, such as the non-homogeneously distributed nutrient within the colony and the substantially decreasing expansion rate caused by agar dehydration. In our study, we propose two plausible reaction-diffusion models (the VN and MVN models) based on the above two factors and validate them against experimental data. Both models provide a plausible description of the non-homogeneously distributed nutrient within the colony and outperform the classical Fisher-Kolmogorov equation and its variation in better describing experimental data. Moreover, by accounting for agar dehydration, the MVN model captures how a colony's expansion slows down and the change of a colony's height profile over time. Furthermore, we demonstrate the existence of a traveling wave solution for the VN model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.