Abstract

The paper outlines the current state in the model reduction of systems governing reacting flows by manifold methods. The main idea of such approaches is based on the fact that any reduced model defines a manifold of low dimen- sion imbedded in the system composition/state space. In this respect the decomposition into relatively fast and slow mo- tions due to multiple time scales present in the system is a crucial property of the reacting system. It allows the application of the geometrical framework of slow and fast invariant manifolds to model reduction. Recently developed approaches, namely, the so-called Reaction-Diffusion Manifolds (REDIMs) and Global-Quasi Linearization (GQL) are in the focus of this work. The methods extend and follow the well known ILDM method. The paper discusses both the theoretical basis of the approaches and detailed implementation schemes for studying, reducing and simulating the reacting flows systems. Simple yet containing all features of the reacting flows models of n-heptane/air and syngas/air systems are used to illus- trate and verify the methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.