Abstract

Isopenicillin N synthase (IPNS) can have both oxidase and oxygenase activity depending on the substrate. For the native substrate, ACV, oxidase activity exists; however, for the substrate analogue ACOV, which lacks an amide nitrogen, IPNS exhibits oxygenase activity. The potential energy surfaces for the O-O bond elongation and cleavage were calculated for three different reactions: homolytic cleavage via traditional Fenton chemistry, heterolytic cleavage, and nucleophilic attack. These surfaces show that the hydroperoxide-ferrous intermediate, formed by O(2)-activated H atom abstraction from the substrate, can exploit different reaction pathways and that interactions with the substrate govern the pathway. The hydrogen bonds from hydroperoxide to the amide nitrogen of ACV polarize the sigma* orbital of the peroxide toward the proximal oxygen, facilitating heterolytic cleavage. For the substrate analogue ACOV, this hydrogen bond is no longer present, leading to nucleophilic attack on the substrate intermediate C-S bond. After cleavage of the hydroperoxide, the two reaction pathways proceed with minimal barriers, resulting in the closure of the beta-lactam ring for the oxidase activity (ACV) or formation of the thiocarboxylate for oxygenase activity (ACOV).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.