Abstract

The reaction chemistry of zinc telluride (ZnTe) metalorganic vapor-phase epitaxy (MOVPE) from dimethylzinc (DMZn), diethylzinc (DEZn), and diisopropyltelluride (DIPTe) has been studied using on-line gas chromatography and infrared spectroscopy. Two growth regimes have been discovered: one at low values of the II/VI ratio and the other at higher values of the II/VI ratio. In the first regime, the group VI compound is consumed in excess, while in the second regime, the group II compound is consumed in excess. The crossover point lies at II/VI = 5.0 for DMZn and at II/VI = 0.3 for DEZn. Stoichiometric ZnTe is deposited under all growth conditions. The excess DIPTe consumed is converted into volatile diisopropylditelluride and isopropyltellurol. Conversely, the excess DEZn or DMZn consumed produces zinc metal. These waste byproducts accumulate in the outlet of the reactor. The hydrocarbon products generated from the ethyl and isopropyl ligands are indicative of radical disproportionation, recombination, and hydrogenation reactions. However, the methyl ligands mainly undergo surface hydrogenation to produce methane.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call