Abstract

Many herbicides that inhibit photosynthesis in plants also inhibit photosynthesis in bacteria. We have isolated three mutants of the photosynthetic bacterium Rhodobacter sphaeroides that were selected for increased resistance to the herbicide terbutryne. All three mutants also showed increased resistance to the known electron transfer inhibitor o-phenanthroline. The primary structures of the mutants were determined by recombinant DNA techniques. All mutations were located on the gene coding for the L-subunit resulting in these changes Ile(229) → Met, Ser(223) → Pro and Tyr(222) → Gly. The mutations of Ser(223) is analogous to the mutation of Ser(264) in the D1 subunit of photosystem II in green plants, strengthening the functional analogy between D1 and the bacterial L-subunit. The changed amino acids of the mutant strains form part of the binding pocket for the secondary quinone, Q b . This is consistent with the idea that the herbicides are competitive inhibitors for the Q b binding site. The reaction centers of the mutants were characterized with respect to electron transfer rates, inhibition constants of terbutryne and o-phenanthroline, and binding constants of the quinone UQ0 and the inhibitors. By correlating these results with the three-dimensional structure obtained from x-ray analysis by Allen et al. (1987a, 1987b), the likely positions of o-phenanthroline and terbutryne were deduced. These correspond to the positions deduced by Michel et al. (1986a) for Rhodopseudomonas viridis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call