Abstract

Thermodynamics favors the reaction between indium and gold, since the heat of formation of AuIn{sub 2} is 6 kcal/mole, substantially larger than the heat of formation of any other possible reaction product. Thermodynamic equilibrium between gold and the elements in the solder mound is reached only when ALL gold is converted to AuIn{sub 2}. There are two aspects to this conversion: (A) the reaction WITHIN the solder mound (called here 'radial reaction') and (B) the reaction OUTSIDE the solder mound (called here 'axial reaction') and the transition from (A) to (B). The reaction between thin gold detonator wires and the In/Pb/Sn solder mound in older detonators has been looked at repeatedly. There are, in addition, two studies which look at the reaction between indium and gold in planar geometry. All data are shown in tables I to V. It is the objective of this section dealing with aspect (A), to combine all of these results into a reaction model and to use this reaction model to reliably and conservatively predict the gold-solder reaction rate of soldered gold bridge-wires as a function of storage temperature and time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.