Abstract

Attached-cell reactors using a bed of granular material for wastewater treatment develop a high biomass concentration which allows an important reduction of the required residence time (Jeris et al., 1977; Elmaleh, 1982). In nitrification of ammonia containing wastewater, oxygen is currently the limiting substrate; in theory, 4.18 g of oxygen are required per 1 g of nitrogen (Painter, 1970). Oxygen can be added with hydrogen peroxide (Grigoropolou, 1980; Seropian, 1980; Yahi et al., 1982) which is nevertheless expensive and it seems better to transfer oxygen from a gas phase, i.e. air, to the liquid phase through a fixed bed (Charpentier, 1976). Two attached-cell reactors (Fig. 1) were operated in parallel for nitrification of ammonia containing synthetic wastewater (Table 2). Air was upflowed through a granular packing (Table 1) maintained in fixed bed while the liquid influent was injected at co- or counter-current. 1. (1) Owing to the high oxygen transfer properties of the system and to the fact that the thickness of biofilm is always less than 100 μm, the whole process was not limited by oxygen concentration of which remained larger than 7 mg l −1 (Fig. 2a) (Bungay et al., 1969). Oxidised nitrogen ammonia is completely converted into nitrate (Fig. 2b). Experimental conditions are given in Table 3. 2. (2) The plot of ammonia conversion against air superficial velocity shows a maximum (Fig. 3) after which conversion decreases rapidly by overloading of the packing (Prost, 1965). Experimental conditions are given in Table 4. 3. (3) Process efficiency decreases when superficial upflow velocity is increased (Fig. 4). 4. (4) Complete abatement of inlet pollution is reached when nitrogen concentration is less than 25 mg l −1 (Fig. 5) which corresponds to a volumetric loading up to 0.6 kg N (NH 4 +) m −3 day −1. Moreover, the experimental data were fitted to a model based on classical assumptions (Roques, 1980; Grady, 1982; Atkinson and Fowler, 1974; Grasmick et al., 1979; Grasmick, 1982; Harremoes, 1976, 1978; Jennings et al., 1976; Williamson and MacCarty, 1976); i.e. zero order intrinsic kinetics and diffusion transport (Table 5), and recently developed (Grasmick, 1982; Rodrigues et al., 1984). This model provides, particularly, a very easy method to check its own use—in reaction regime and in diffusion regime—when time spans or inlet concentration are changed; experimental results can indeed be plotted in such a way that straight lines are obtained (Table 6). Figures 6 and 7 show the data obtained with the counter-current nitrification reactor when respectively inlet concentration and time spans are varied. The plotted straight lines show that the overall reaction is zero order and that, therefore, the biofilm is fully penetrated. A critical time span θ c and a critical inlet concentration C c , for which complete conversion is achieved, are then calculated, θ c is theoretically proportional to C 1 which is verified in Fig. 8. The straight line θ c vs C 1 can then be used in reactor design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call