Abstract

The rate of n-hexane reactions with O2 increased in parallel with the concentration of hexyl hydroperoxide (ROOH) intermediates and with the number of Mnredox sites in microporous MnAPO-5 and MnAPO-18 catalysts. These data confirmed the catalytic nature of oxidation pathways and the mechanistic resemblance between n-alkane and cycloalkane oxidation pathways. Cyclohexane oxidation turnover rates were higher on MnAPO-5 than on MnAPO-18, because small channels in the latter inhibit contact between reactants and Mn active centers. In contrast, n-hexane oxidation turnover rates (per redox-active Mn center) were similar on MnAPO-5 and MnAPO-18, because smaller n-hexane reactants diffuse rapidly and contact active sites in both microporous structures. MnAPO-18 is able to select reactants based on their size, but no regiospecificity was detected on MnAPO-18 or MnAPO-5 for n-hexane oxidation to alkanols, aldehydes, and ketones (7−8% terminal selectivity). The relative reactivity of primary and secondary C−H bonds ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.