Abstract

In this paper, we present the RPD (reactant-product decoupling) approach to the calculation of final-state distribution in photodissociation of H2O in three-dimensional space. Although the RPD approach was recently developed for bimolecular state-to-state reactive scattering calculations, its application to photodissociation dynamics is very attractive. Specifically in photodissociation, the interaction (reactant) component wavefunction ψr (which in the present case of photodissociation is replaced by the interaction component ψint) is nonzero only in the strong interaction region, which greatly simplifies the numerical calculation for ψint in comparison to that for ψr in a full bimolecular reactive scattering calculation. In the following report, the time-dependent implementation of the RPD approach to the photodissociation of H2O in three dimensions is given and the calculated rovibrational state distributions of the OH fragment are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.