Abstract

In spite of the excellent electrochemical performance in lithium-ion batteries (LIBs), transition-metal compounds usually show inferior capacity and cyclability in sodium-ion batteries (SIBs), implying different reaction schemes between these two types of systems. Herein, coupling operando magnetometry with electrochemical measurement, we peformed a comprehensive investigation on the intrinsic relationship between the ion-embedding mechanisms and the electrochemical properties of the typical FeS2/Na (Li) cells. Operando magnetometry together with ex-situ transmission electron microscopy (TEM) measurement reveal that only part of FeS2 is involved in the conversion reaction process, while the unreactive parts form "inactive cores" that lead to the low capacity. Through quantification with Langevin fitting, we further show that the size of the iron grains produced by the conversion reaction are much smaller in SIBs than that in LIBs, which may lead to more serious pulverization, thereby resulting in worse cycle performance. The underlying reason for the above two above phenomena in SIBs is the sluggish kinetics caused by the larger Na-ion radius. Our work paves a new way for the investigation of novel SIB materials with high capacity and long durability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.