Abstract
The Landsberg limit represents the ultimate efficiency limit of solar energy harvesting. Reaching this limit requires the use of nonreciprocal elements. The existing device configurations for attaining the Landsberg limit, however, are very complicated. Here, we introduce the concept of a nonreciprocal multijunction solar cell and show that such a cell can reach the Landsberg limit in the idealized situation where an infinite number of layers are used. We also show that such a nonreciprocal multijunction cell outperforms a standard reciprocal multijunction cell for a finite number of layers. Our work significantly simplifies the device configuration required to reach the ultimate limit of solar energy conversion and points to a pathway toward using nonreciprocity to improve solar energy harvesting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.