Abstract

Biomolecules are highly pressure-sensitive, but their dynamics upon return to ambient pressure are often too fast to observe with existing approaches. We describe a sample-efficient method capable of large and very fast pressure drops (<1 nanomole, >2,500 atmospheres and <0.7 microseconds). We validated the method by fluorescence-detected refolding of a genetically engineered lambda repressor mutant from its pressure-denatured state. We resolved barrierless structure formation upon return to ambient pressure; we observed a 2.1 +/- 0.7 microsecond refolding time, which is very close to the 'speed limit' for proteins and much faster than the corresponding temperature-jump refolding of the same protein. The ability to experimentally perform a large and very fast pressure drop opens up a new region of the biomolecular energy landscape for atomic-level simulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.