Abstract

The MAGIC telescopes have been designed primarily to reach the lowest possible energy threshold with the ground-based Imaging Atmospheric Cherenkov technique, in order to fill the gap between MeV–GeV gamma-ray satellite experiments and TeV ground-based installations. With the construction of a second MAGIC telescope and the subsequent use of the stereoscopic operation mode, this goal has already been largely achieved. Astrophysical spectra of some active galactic nuclei and pulsar wind nebulae, for example, are now completely sampled in the high energy peak from MeV to TeV. Frequently, this was achieved in multi-wavelength campaigns covering many orders of magnitude in energy and permitting a deeper insight into the target physics. In addition, the sensitivity at low energies allows us to perform studies of pulsars, gamma-ray burst and other fundamental physics topics.In this review, the improvement due to the stereoscopic upgrade will be briefly presented and discussed. The importance of low energy studies in astrophysics and fundamental physics searches will be exposed together with a selection of the most recent and sometimes conspicuous results obtained with the MAGIC-stereo experiment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call