Abstract
Let f(⋅, t) be the probability density function which represents the solution of Kac’s equation at time t, with initial data f0, and let gσ be the Gaussian density with zero mean and variance σ2, σ2 being the value of the second moment of f0. This is the first study which proves that the total variation distance between f(⋅, t) and gσ goes to zero, as t→+∞, with an exponential rate equal to −1/4. In the present paper, this fact is proved on the sole assumption that f0 has finite fourth moment and its Fourier transform ϕ0 satisfies |ϕ0(ξ)|=o(|ξ|−p) as |ξ|→+∞, for some p>0. These hypotheses are definitely weaker than those considered so far in the state-of-the-art literature, which in any case, obtains less precise rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.