Abstract

The paper presents an analysis of human reaching movements in manipulation of flexible objects. To predict the trajectory of human hand, a minimum crackle criterion has been recently proposed in literature. A different approach is explored in this paper. To explain the trajectory formation, we resort to the minimum hand jerk criterion. First, we show that this criterion matches well experimental data available in literature. Next, we argue that, contrary to the minimum crackle criterion, the minimum hand jerk criterion produces bounded hand velocity profiles for multi-mass flexible objects. Finally, we present initial experimental results confirming the applicability of the minimum hand jerk criterion in manipulation of multi-mass objects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.