Abstract

In indirect-drive implosions, the final core hot spot energy and pressure and, hence, neutron yield attainable in 1D increase with increasing laser peak power and, hence, radiation drive temperature at the fixed capsule and Hohlraum size. We present simple analytic scalings validated by 1D simulations that quantify the improvement in performance and use this to explain existing data and simulation trends. Extrapolating to the 500 TW National Ignition Facility peak power limit in a low gas-fill 5.4 mm diameter Hohlraum based on existing high adiabat implosion data at 400 TW, 1.3 MJ and 1 × 1016 yield, we find that a 2–3 × 1017 yield (0.5–0.7 MJ) is plausible using only 1.8 MJ of laser energy. Based on existing data varying deuterium–tritium (DT) fuel thickness and dopant areal density, further improvements should be possible by increasing DT fuel areal density, and hence confinement time and yield amplification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call