Abstract

This paper investigates reachable set estimation and state-feedback controller design for linear time-delay control systems with bounded disturbances. By constructing an appropriate Lyapunov–Krasovskii functional, we obtain a delay-dependent condition, which determines the admissible bounding ellipsoid for the reachable set of the system we considered. Then, a sufficient condition in the form of liner matrix inequalities is given to solve the problem of controller design and reachable set estimation. Then, by minimizing the volume of the ellipsoid and solving the liner matrix inequality, we obtain the desired ellipsoid and controller gain. A comparative numerical example is given to show the effectiveness of our result.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.