Abstract

Systems consisting of several finite components that communicate via unbounded perfect FIFO channels (i.e., FIFO systems) arise naturally in modeling distributed systems. Despite well-known difficulties in analyzing such systems, they are of significant interest as they can describe a wide range of communication protocols. In this article, we study the problem of computing the set of reachable states of a FIFO system composed of piecewise components. This problem is closely related to calculating the set of all possible channel contents, that is, the limit language , for each control location. We present an algorithm for calculating the limit language of a system with a single communication channel. For multichannel systems, we show that the limit language is piecewise if the initial language is piecewise. Our construction is not effective in general; however, we provide algorithms for calculating the limit language of a restricted class of multichannel systems in which messages are not passed around in cycles through different channels. We show that the worst case complexity of our algorithms for single-channel and important subclasses of multichannel systems is exponential in the size of the initial content of the channels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call