Abstract

In quantum systems theory one of the fundamental problems boils down to: given an initial state, which final states can be reached by the dynamic system in question. Here we consider infinite-dimensional open quantum dynamical systems following a unital Kossakowski–Lindblad master equation extended by controls. More precisely, their time evolution shall be governed by an inevitable potentially unbounded Hamiltonian drift term H0, finitely many bounded control Hamiltonians Hj allowing for (at least) piecewise constant control amplitudes [Formula: see text] plus a bang-bang (i.e., on-off) switchable noise term ГV in Kossakowski–Lindblad form. Generalizing standard majorization results from finite to infinite dimensions, we show that such bilinear quantum control systems allow to approximately reach any target state majorized by the initial one as up to now it only has been known in finite dimensional analogues. The proof of the result is currently limited to the bounded control Hamiltonians Hj and for noise terms ГV with compact normal V.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.