Abstract

The advent of Big graphs characterized by their enormous number of nodes, with multiple edges between them makes the existing reachability query indexing approaches unable to guarantee a reasonable time for both the index construction and query steps. Therefore a novel approach that takes into account these new characteristics during the graph processing is needed. In this paper, we propose an Overlay Graph-based Distributed Reachability Indexing approach (ODRI), an indexing scheme through which the index construction and reachability query are processed in a parallel and distributed manner. The key idea of ODRI is to process a Big graph as a set of smaller subgraphs (partitions) interconnected to each other through an overlay graph. In this way, the partitions can be indexed in parallel and, at the same time, the reachability information can also be extracted. Hence, the index construction and query processing time will be reduced significantly. Therefore, ODRI ensures the scalability of Big graphs, which is a challenge for the existing reachability approaches. Besides, we formally prove that this strategy preserves the reachability properties. Using real-life data, we experimentally verify that our approach outperforms the state-of-the-art methods, and is scalable in terms of the number of partitions, regardless of how graphs are distributed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.