Abstract
Reachability is one of the most important behavioral properties of Petri nets. We propose in this paper a novel approach for solving the fundamental equation in the reachability analysis of acyclic Petri nets, which has been known to be NP-complete. More specifically, by adopting a revised version of the cell enumeration method for an arrangement of hyperplanes in discrete geometry, we develop an efficient solution scheme to identify firing count vector solution(s) to the fundamental equation on a bounded integer set, with a complexity bound of O((nu)n−m), where n is the number of transitions, m is the number of places and u is the upper bound of the number of firings for all individual transitions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.