Abstract

Reachability and distance queries in graphs are fundamental to numerous applications, ranging from geographic navigation systems to Internet routing. Some of these applications involve huge graphs and yet require fast query answering. We propose a new data structure for representing all distances in a graph. The data structure is distributed in the sense that it may be viewed as assigning labels to the vertices, such that a query involving vertices u and v may be answered using only the labels of u and v. Our labels are based on 2-hop covers of the shortest paths, or of all paths, in a graph. For shortest paths, such a cover is a collection S of shortest paths such that, for every two vertices u and v, there is a shortest path from u to v that is a concatenation of two paths from S. We describe an efficient algorithm for finding an almost optimal 2-hop cover of a given collection of paths. Our approach is general and can be applied to directed or undirected graphs, exact or approximate shortest paths, or to reachability queries. We study the proposed data structure using a combination of theoretical and experimental means. We implemented our algorithm and checked the size of the resulting data structure on several real-life networks from different application areas. Our experiments show that the total size of the labels is typically not much larger than the network itself, and is usually considerably smaller than an explicit representation of the transitive closure of the network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.