Abstract

A model for discrete time stochastic hybrid systems whose evolution can be influenced by some control input is proposed in this paper. With reference to the introduced class of systems, a methodology for probabilistic reachability analysis is developed that is relevant to safety verification. This methodology is based on the interpretation of the safety verification problem as an optimal control problem for a certain controlled Markov process. In particular, this allows to characterize through some optimal cost function the set of initial conditions for the system such that safety is guaranteed with sufficiently high probability. The proposed methodology is applied to the problem of regulating the average temperature in a room by a thermostat controlling a heater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.