Abstract

The high aqueous solubility of chitosan restricts the utility of chitosan microspheres for gastric drug delivery. This paper describes the preparation of reacetylated chitosan microspheres with suitable properties for the controlled release of active anti-microbial agents, such as amoxycillin and metronidazole, in the gastric cavity. Two different microencapsulation approaches were developed and optimized in order to encapsulate hydrophilic (amoxycillin) and hydrophobic (metronidazole) compounds efficiently. The reacetylated chitosan microspheres exhibited a controlled water swelling capacity and gelified at acidic pH, resulting in prolonged release of the encapsulated antibiotics. The reacetylation time was found to be a key factor that affects not only drug release, but also encapsulation efficiency and anti-microbial activity of the encapsulated compound. The last two parameters were also dependent on drug solubility in the reacetylating agent. Using short reacetylation time periods, it was possible to efficiently control the release of both hydrophilic and lipophilic antibiotics while maintaining their activity against different bacteria. Consequently, reacetylated chitosan microspheres are promising vehicles for the controlled delivery of anti-microbial agents to the gastric cavity and, hence, for the eradication of Helicobacter pylori, a pathogen strongly associated with gastric ulcers and possibly gastric carcinoma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call