Abstract

New octahedral rhenium cluster complexes [{Re6Q8}(SO3)6]10- (Q = S or Se) were synthesized starting from [{Re6Q8}(H2O)4(OH)2]·12H2O. The complexes were crystallized as sodium salts and characterized by X-ray single-crystal diffraction and elemental analyses, IR, UV/vis and luminescence spectroscopies. Magnetic relaxation data demonstrate the complex formation of the cluster units with gadolinium ions. The analysis of the magnetic relaxation rates measured at various Gd:cluster ratios and different concentrations revealed the conversion of the aggregates (Gdx[{Re6Se8}(SO3)6]y)n- into a nanoparticulate form even at x = 1 and y ≥ 1. Thus, the self-assembly of the cluster units into the nanoparticles is greatly facilitated by counterion binding with sodium cations. The concentration conditions were optimized for the formation and hydrophilization of NaxGdy[{Re6Q8}(SO3)6]-based colloids with the magnetic relaxivity values of r1(2) = 21.0(24.1) and r1(2) = 25.9(29.8) mM-1 s-1 for the {Re6S8}2+ and {Re6Se8}2+ derivatives, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.