Abstract

We proposed two physical concepts, i.e., an intramolecular relative cross section (RCS) and an intermolecular relative scattering ability (RSA), to re-understand and re-describe surface-enhanced Raman scattering (SERS) and established a general SERS quantification theory. Interestingly, RCS and RSA are intrinsic factors and are experimentally measurable to form datasheets of molecules, namely, SERS cards, with which a standard SERS quantification procedure was established. The validity of the theory and quantification procedure was confirmed by experiments. Surprisingly, RCS and RSA are also valid for complex systems being considered as virtual molecules and are experimentally measurable. This simplifies complex systems into analyte-virtual molecule binary systems. With this consideration, trace-level mitoxantrone (a typical cancer drug metabolite) in artificial urine was accurately predicted. The theory, the SERS cards, the standard quantification procedure, and the virtual molecule concept pave a way toward quantitative and standardized SERS spectroscopy in dealing with real-world problems and complex samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.