Abstract

Abstract Hypoxia is presently seen as the principal driver behind the decline of the former dominating Eastern Baltic cod stock (EBC; Gadus morhua). It has been proposed that both worsening conditions for reproduction and lower individual growth, condition, and survival are linked to hypoxia. Here, we elucidate the ecological envelope of EBC in terms of salinity stratification, oxygen content, and benthic animal biomasses, and how it has affected EBC productivity over time. The spawning conditions started deteriorating in the Gotland Deep in the 1950s due to oxygen depletion. In contrast, in the Bornholm Basin, hydrographic conditions have remained unchanged over the last 60 years. Indeed, the current extent of both well-oxygenated areas and the frequency of hypoxia events do not differ substantially from periods with high EBC productivity in the 1970s–1980s. Furthermore, oxygenated and therefore potentially suitable feeding areas are abundant in all parts of the Baltic Sea, and our novel analysis provides no evidence of a reduction in benthic food sources for EBC over the last 30 years. We find that while reproduction failure is intricately linked to hydrographic dynamics, a relationship between the spread of hypoxia and the decline in EBC productivity during the last decades cannot be substantiated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.