Abstract

Accurate measurement of agricultural total factor productivity (AGTFP) is crucial to measure the level of sustainable agricultural development, and agricultural carbon sink is an important element to leverage the development of green transformation. Few studies have incorporated agricultural carbon sink into the measurement framework of AGTFP, and the evolutionary dynamics and related spatial effects of Chinese AGTFP from the perspective of carbon sinks are unclear. On this basis, the paper used a provincial-level agricultural panel data set of China from 2000 to 2019 to measure the provincial indicators of agricultural carbon sinks, CO2 emissions and agricultural non-point source pollution. Then, we incorporated these environmental factors into the measurement framework of AGTFP and used the SBM-DEA model to calculate the Chinese AGTFP from the perspective of carbon sinks. We further analyzed the spatial and temporal divergence and convergence of AGTFP in China using Moran’I and spatial econometric models. We found that after measuring AGTFP, including agricultural carbon sinks, 28 out of 30 Chinese provinces showed an increased trend, but the development gap between regions was obvious. The spatial econometric model showed a significantly positive spatial correlation between the AGTFP of each province and did not have absolute α-convergence and absolute β-convergence characteristics. After adding the control variables of resource endowment of each province, it showed conditional β-convergence characteristics, and the spatial spillover effect of China’s AGTFP was increasing. Finally, the paper proposed policy recommendations for the sustainable and coordinated development of China’s agricultural regions in response to the research findings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call