Abstract

A QRT map is the composition of two involutions on a biquadratic curve: one switching the $ x $-coordinates of two intersection points with a given horizontal line, and the other switching the $ y $-coordinates of two intersections with a vertical line. Given a QRT map, a natural question is to ask whether it allows a decomposition into further involutions. Here we provide new answers to this question and show how they lead to a new class of maps, as well as known HKY maps and quadrirational Yang-Baxter maps.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.