Abstract

We re-explain the Weyl quantization scheme by virtue of the technique of integration within Weyl ordered product of operators, i.e., the Weyl correspondence rule can be reconstructed by classical functions' Fourier transformation followed by an inverse Fourier transformation within Weyl ordering of operators. As an application of this reconstruction, we derive the quantum operator coresponding to the angular spectrum amplitude of a spherical wave.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.