Abstract

We present an in-depth discussion of the magnetic ground state of α''-Fe16N2 within the framework of the density functional theory (DFT). The exchange-correlation effects are treated using a variety of schemes, including the local-spin-density approximation, the generalized-gradient approximation, and the Strongly-Constrained-and-Appropriately-Normed (SCAN) scheme. We also delineate effects of adding an on-site interaction parameter U on the Fe sites. Among all the schemes considered, only SCAN+U is found to capture the surprisingly large magnetization density in α''-Fe16N2 that has been observed experimentally. Our study shows how the combination of SCAN and self-interaction corrections applied on different Fe sites through the parameter U can reproduce both the correct equilibrium volume and the giant magnetization density of α''-Fe16N2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.