Abstract

BackgroundMalaria risk maps play an increasingly important role in disease control planning, implementation, and evaluation. The construction of these maps using modern geospatial techniques relies on covariate grids: continuous surfaces quantifying environmental factors that partially explain spatial heterogeneity in malaria endemicity. Although crucial, past variable selection processes for this purpose have often been subjective and ad-hoc, with many covariates used in modeling with little quantitative justification.MethodsThis research consists of an extensive covariate construction and selection process for predicting Plasmodium falciparum parasite rates (PfPR) in Africa for years 2000-2012. First, a literature review was conducted to establish a comprehensive list of covariates used for malaria mapping. Second, a library of covariate data was assembled to reflect this list, a process that included the construction of multiple, temporally dynamic datasets. Third, the resulting set of covariates was leveraged to create more than 50 million possible covariate terms via factorial combinations of different spatial and temporal aggregations, transformations, and pairwise interactions. Fourth, the expanded set of covariates was reduced via successive selection criteria to yield a robust covariate subset that was assessed using an out-of-sample validation approach.ResultsThe final covariate subset included predominately dynamic covariates and it substantially out-performed earlier sets used by the Malaria Atlas Project (MAP) for creating global malaria risk maps, with the pseudo-R2 value for the out-of-sample validation increasing from 0.43 to 0.52. Dynamic covariates improved the model, with 17 of the 20 new covariates consisting of monthly or annual products, but the selected covariates were typically interaction terms that included both dynamic and synoptic datasets. Thus the interplay between normal (i.e., long-term averages) and immediate conditions may be key for characterizing environmental controls on parasite rate.ConclusionsThis analysis represents the first effort to systematically audit covariate utility for malaria mapping and then derive an objective, empirically based set of environmental covariates for modeling PfPR. The new covariates produce more reliable representations of malaria risk patterns and how they are changing through time, and these covariates will be used to characterize spatially and temporally varying environmental conditions affecting PfPR within a geostatistical-modeling framework, thus building upon previous research by MAP that produced global malaria maps for 2007 and 2010.Electronic supplementary materialThe online version of this article (doi:10.1186/s12936-015-0574-x) contains supplementary material, which is available to authorized users.

Highlights

  • Malaria risk maps play an increasingly important role in disease control planning, implementation, and evaluation

  • The new covariates produce more reliable representations of malaria risk patterns and how they are changing through time, and these covariates will be used to characterize spatially and temporally varying environmental conditions affecting Plasmodium falciparum parasite rates (PfPR) within a geostatistical-modeling framework, building upon previous research by Malaria Atlas Project (MAP) that produced global malaria maps for 2007 and 2010

  • This paper aims to improve upon the earlier MAP variable selection approach, which will be used as the benchmark for judging the results of the research presented

Read more

Summary

Introduction

Malaria risk maps play an increasingly important role in disease control planning, implementation, and evaluation. The production of malaria risk maps has been revolutionized through (i) the application of geographic information systems (GIS); (ii) the development of analytical techniques that extend statistical methodology into the spatial domain [2]; (iii) the evolution of spatial data products (i.e., covariates) that characterize natural and anthropogenic phenomena in a spatially explicit manner; and (iv) the proliferation of large-scale survey efforts that include measurements of malaria infection prevalence in geolocated communities [3] Together these developments provide the tools and datasets necessary for producing malaria maps, including global products [4,5,6] that have a demonstrated utility within the malaria policy sphere [7]. Despite the increasing number of published malaria maps, a thorough meta-analysis of the spatial covariates utilized has not been undertaken

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.