Abstract

ABSTRACTThe Bregman divergence (Bregman distance, Bregman measure of distance) is a certain useful substitute for a distance, obtained from a well-chosen function (the ‘Bregman function’). Bregman functions and divergences have been extensively investigated during the last decades and have found applications in optimization, operations research, information theory, nonlinear analysis, machine learning and more. This paper re-examines various aspects related to the theory of Bregman functions and divergences. In particular, it presents many sufficient conditions which allow the construction of Bregman functions in a general setting and introduces new Bregman functions (such as a negative iterated log entropy). Moreover, it sheds new light on several known Bregman functions such as quadratic entropies, the negative Havrda-Charvát-Tsallis entropy, and the negative Boltzmann-Gibbs-Shannon entropy, and it shows that the negative Burg entropy, which is not a Bregman function according to the classical theory but nevertheless is known to have ‘Bregmanian properties’, can, by our re-examination of the theory, be considered as a Bregman function. Our analysis yields several by-products of independent interest such as the introduction of the concept of relative uniform convexity (a certain generalization of uniform convexity), new properties of uniformly and strongly convex functions, and results in Banach space theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.