Abstract
Methanosarcina mazei is a methanogenic archaeon that is able to thrive on various substrates and therefore contains a variety of redox-active proteins involved in both cytoplasmic and membrane-bound electron transport. The organism possesses a complex branched respiratory chain that has the ability to utilize different electron donors. In this study, two knockout mutants of the membrane-bound F(420) dehydrogenase (ΔfpoF and ΔfpoA-O) were constructed and analyzed. They exhibited severe growth deficiencies with trimethylamine, but not with acetate, as substrates. In cell lysates of the fpo mutants, the F(420):heterodisulfide oxidoreductase activity was strongly reduced, although soluble F(420) hydrogenase was still present. This led to the conclusion that the predominant part of cellular oxidation of the reduced form of F(420) (F(420)H(2)) in Ms. mazei is performed by F(420) dehydrogenase. Enzyme assays of cytoplasmic fractions revealed that ferredoxin (Fd):F(420) oxidoreductase activity was essentially absent in the ΔfpoF mutant. Subsequently, FpoF was produced in Escherichia coli and purified for further characterization. The purified FpoF protein catalyzed the Fd:F(420) oxidoreductase reaction with high specificity (the K(M) for reduced Fd was 0.5 μM) but with low velocity (V(max) = 225 mU·mg(-1)) and was present in the Ms. mazei cytoplasm in considerable amounts. Consequently, soluble FpoF might participate in electron carrier equilibrium and facilitate survival of the Ms. mazei Δech mutant that lacks the membrane-bound Fd-oxidizing Ech hydrogenase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.