Abstract

Magnesium batteries have emerged as a promising alternative to lithium-ion batteries due to their theoretical high energy density and abundant magnesium resources. Vanadium dioxide, VO2 (B), has been reported as a high-capacity cathode material for magnesium batteries. However, the electrochemical intercalation mechanism requires further elucidation due to a limited understanding of the structure-property relationship. In this study, we re-evaluated the magnesium storage capability of the material, with a particular focus on the influence of water content in nonaqueous electrolytes. The higher discharge capacity of 250 mAh g-1 is achieved exclusively in the wet electrolyte with 650 ppm water content. A significantly lower capacity of 51 mAh g-1 was observed in the dry electrolyte solution containing 40 ppm water content. Through X-ray structural and elemental analyses, as well as magnesium-ion diffusion pathway analysis using bond-valence-energy-landscape calculations, the restricted capacity was clarified by examining the reaction mechanism. According to this study, the impressive capacity of magnesium-ion battery cathodes may be exaggerated due to the involvement of non-magnesium-ion insertion unless the electrolytes' water content is appropriately regulated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.